Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Maximum Likelihood Fusion of Stochastic Maps (1303.6170v1)

Published 25 Mar 2013 in stat.AP and cs.RO

Abstract: The fusion of independently obtained stochastic maps by collaborating mobile agents is considered. The proposed approach includes two parts: matching of stochastic maps and maximum likelihood alignment. In particular, an affine invariant hypergraph is constructed for each stochastic map, and a bipartite matching via a linear program is used to establish landmark correspondence between stochastic maps. A maximum likelihood alignment procedure is proposed to determine rotation and translation between common landmarks in order to construct a global map within a common frame of reference. A main feature of the proposed approach is its scalability with respect to the number of landmarks: the matching step has polynomial complexity and the maximum likelihood alignment is obtained in closed form. Experimental validation of the proposed fusion approach is performed using the Victoria Park benchmark dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.