2000 character limit reached
Knowledge Integration for Conditional Probability Assessments (1303.5404v1)
Published 13 Mar 2013 in cs.AI
Abstract: In the probabilistic approach to uncertainty management the input knowledge is usually represented by means of some probability distributions. In this paper we assume that the input knowledge is given by two discrete conditional probability distributions, represented by two stochastic matrices P and Q. The consistency of the knowledge base is analyzed. Coherence conditions and explicit formulas for the extension to marginal distributions are obtained in some special cases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.