2000 character limit reached
    
  Reduced products of UHF algebras under forcing axioms (1303.5037v1)
    Published 20 Mar 2013 in math.LO and math.OA
  
  Abstract: If $A_n$ is a sequence of C*-algebras, then the C*-algebra $\prod A_n / \bigoplus A_n$ is called a reduced product. We prove, assuming Todorcevic's Axiom and Martin's Axiom, that every isomorphism between two reduced products of separable, unital UHF algebras must be definable in a strong sense. As a corollary we deduce that two such reduced products $\prod A_n / \bigoplus A_n$ and $\prod B_n / \bigoplus B_n$ are isomorphic if and only if, up to an almost-permutation of $\mathbb{N}$, $A_n$ is isomorphic to $B_n$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.