From Symplectic Measurements to the Mahler Conjecture (1303.4197v2)
Abstract: In this note we link symplectic and convex geometry by relating two seemingly different open conjectures: a symplectic isoperimetric-type inequality for convex domains, and Mahler's conjecture on the volume product of centrally symmetric convex bodies. More precisely, we show that if for convex bodies of fixed volume in the classical phase space the Hofer-Zehnder capacity is maximized by the Euclidean ball, then a hypercube is a minimizer for the volume product among centrally symmetric convex bodies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.