Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Phase space formalism for quantum estimation of Gaussian states (1303.3682v1)

Published 15 Mar 2013 in quant-ph

Abstract: We formulate, with full generality, the asymptotic estimation theory for Gaussian states in terms of their first and second moments. By expressing the quantum Fisher information (QFI) and the elusive symmetric logarithmic derivative (SLD) in terms of the state's moments (and their derivatives) we are able to obtain the noncommutative extension of the well known expression for the Fisher information of a Gaussian probability distribution. Focusing on models with fixed first moments and identical Williamson 'diagonal' states --which include pure state models--, we obtain their SLD and QFI, and elucidate what features of the Wigner function are fundamentally accessible, and at what rates. In addition, we find the optimal homodyne detection scheme for all such models, and show that for pure state models they attain the fundamental limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube