Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized Dyck paths of bounded height (1303.2724v1)

Published 11 Mar 2013 in math.CO

Abstract: Generalized Dyck paths (or discrete excursions) are one-dimensional paths that take their steps in a given finite set S, start and end at height 0, and remain at a non-negative height. Bousquet-M\'elou showed that the generating function E_k of excursions of height at most k is of the form F_k/F_{k+1}, where the F_k are polynomials satisfying a linear recurrence relation. We give a combinatorial interpretation of the polynomials F_k and of their recurrence relation using a transfer matrix method. We then extend our method to enumerate discrete meanders (or paths that start at 0 and remain at a non-negative height, but may end anywhere). Finally, we study the particular case where the set S is symmetric and show that several simplifications occur.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.