Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lattice Boltzmann based discrete simulation for gas-solid fluidization (1303.2653v2)

Published 12 Mar 2013 in physics.flu-dyn and physics.comp-ph

Abstract: Discrete particle simulation, a combined approach of computational fluid dynamics and discrete methods such as DEM (Discrete Element Method), DSMC (Direct Simulation Monte Carlo), SPH (Smoothed Particle Hydrodynamics), PIC (Particle-In-Cell), etc., is becoming a practical tool for exploring lab-scale gas-solid systems owing to the fast development of parallel computation. However, gas-solid coupling and the corresponding fluid flow solver remain immature. In this work, we propose a modified lattice Boltzmann approach to consider the effect of both the local solid volume fraction and the local relative velocity between particles and fluid, which is different from the traditional volume-averaged Navier-Stokes equations. A time-driven hard sphere algorithm is combined to simulate the motion of individual particles, in which particles interact with each other via hard-sphere collisions, the collision detection and motion of particles are performed at constant time intervals. The EMMS (energy minimization multi-scale) drag is coupled with the lattice Boltzmann based discrete particle simulation to improve the accuracy. Two typical fluidization processes, namely, a single bubble injection at incipient fluidization and particle clustering in a fast fluidized bed riser, are simulated with this approach, with the results showing a good agreement with published correlations and experimental data. The capability of the approach to capture more detailed and intrinsic characteristics of particle-fluid systems is demonstrated. The method can also be used straightforward with other solid phase solvers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.