Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Integrability in non-perturbative QFT (1303.2578v1)

Published 11 Mar 2013 in hep-th, math-ph, and math.MP

Abstract: Exact non-perturbative partition functions of coupling constants and external fields exhibit huge hidden symmetry, reflecting the possibility to change integration variables in the functional integral. In many cases this implies also some non-linear relations between correlation functions, typical for the tau-functions of integrable systems. To a variety of old examples, from matrix models to Seiberg-Witten theory and AdS/CFT correspondence, now adds the Chern-Simons theory of knot invariants. Some knot polynomials are already shown to combine into tau-functions, the search for entire set of relations is still in progress. It is already known, that generic knot polynomials fit into the set of Hurwitz partition functions -- and this provides one more stimulus for studying this increasingly important class of deformations of the ordinary KP/Toda tau-functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.