Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Robust Zero-point Attraction LMS Algorithm on Near Sparse System Identification

Published 9 Mar 2013 in cs.IT and math.IT | (1303.2255v1)

Abstract: The newly proposed $l_1$ norm constraint zero-point attraction Least Mean Square algorithm (ZA-LMS) demonstrates excellent performance on exact sparse system identification. However, ZA-LMS has less advantage against standard LMS when the system is near sparse. Thus, in this paper, firstly the near sparse system modeling by Generalized Gaussian Distribution is recommended, where the sparsity is defined accordingly. Secondly, two modifications to the ZA-LMS algorithm have been made. The $l_1$ norm penalty is replaced by a partial $l_1$ norm in the cost function, enhancing robustness without increasing the computational complexity. Moreover, the zero-point attraction item is weighted by the magnitude of estimation error which adjusts the zero-point attraction force dynamically. By combining the two improvements, Dynamic Windowing ZA-LMS (DWZA-LMS) algorithm is further proposed, which shows better performance on near sparse system identification. In addition, the mean square performance of DWZA-LMS algorithm is analyzed. Finally, computer simulations demonstrate the effectiveness of the proposed algorithm and verify the result of theoretical analysis.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.