Papers
Topics
Authors
Recent
2000 character limit reached

Iterative-Promoting Variable Step-size Least Mean Square Algorithm For Adaptive Sparse Channel Estimation

Published 13 Apr 2015 in cs.SY | (1504.03077v1)

Abstract: Least mean square (LMS) type adaptive algorithms have attracted much attention due to their low computational complexity. In the scenarios of sparse channel estimation, zero-attracting LMS (ZA-LMS), reweighted ZA-LMS (RZA-LMS) and reweighted -norm LMS (RL1-LMS) have been proposed to exploit channel sparsity. However, these proposed algorithms may hard to make tradeoff between convergence speed and estimation performance with only one step-size. To solve this problem, we propose three sparse iterative-promoting variable step-size LMS (IP-VSS-LMS) algorithms with sparse constraints, i.e. ZA, RZA and RL1. These proposed algorithms are termed as ZA-IPVSS-LMS, RZA-IPVSS-LMS and RL1-IPVSS-LMS respectively. Simulation results are provided to confirm effectiveness of the proposed sparse channel estimation algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.