Papers
Topics
Authors
Recent
Search
2000 character limit reached

Socially stable matchings in the Hospitals / Residents problem

Published 8 Mar 2013 in cs.GT | (1303.2041v3)

Abstract: In the Hospitals/Residents (HR) problem, agents are partitioned into hospitals and residents. Each agent wishes to be matched to an agent in the other set and has a strict preference over these potential matches. A matching is stable if there are no blocking pairs, i.e., no pair of agents that prefer each other to their assigned matches. Such a situation is undesirable as it could lead to a deviation in which the blocking pair form a private arrangement outside the matching. This however assumes that the blocking pair have social ties or communication channels to facilitate the deviation. Relaxing the stability definition to take account of the potential lack of social ties between agents can yield larger stable matchings. In this paper, we define the Hospitals/Residents problem under Social Stability (HRSS) which takes into account social ties between agents by introducing a social network graph to the HR problem. Edges in the social network graph correspond to resident-hospital pairs in the HR instance that know one another. Pairs that do not have corresponding edges in the social network graph can belong to a matching M but they can never block M. Relative to a relaxed stability definition for HRSS, called social stability, we show that socially stable matchings can have different sizes and the problem of finding a maximum socially stable matching is NP-hard, though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.