Papers
Topics
Authors
Recent
2000 character limit reached

Exactly Solvable BCS-BEC crossover Hamiltonians

Published 7 Mar 2013 in nlin.SI, math-ph, and math.MP | (1303.1611v1)

Abstract: We demonstrate a novel approach that allows the determination of very general classes of exactly solvable Hamiltonians via Bethe ansatz methods. This approach combines aspects of both the co-ordinate Bethe ansatz and algebraic Bethe ansatz. The eigenfunctions are formulated as factorisable operators acting on a suitable reference state. Yet, we require no prior knowledge of transfer matrices or conserved operators. By taking a variational form for the Hamiltonian and eigenstates we obtain general exact solvability conditions. The procedure is conducted in the framework of Hamiltonians describing the crossover between the low-temperature phenomena of superconductivity, in the Bardeen-Cooper-Schrieffer (BCS) theory, and Bose-Einstein condensation (BEC).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.