Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mitigating Timing Side Channel in Shared Schedulers (1302.6123v1)

Published 25 Feb 2013 in cs.CR

Abstract: In this work, we study information leakage in timing side channels that arise in the context of shared event schedulers. Consider two processes, one of them an innocuous process (referred to as Alice) and the other a malicious one (referred to as Bob), using a common scheduler to process their jobs. Based on when his jobs get processed, Bob wishes to learn about the pattern (size and timing) of jobs of Alice. Depending on the context, knowledge of this pattern could have serious implications on Alice's privacy and security. For instance, shared routers can reveal traffic patterns, shared memory access can reveal cloud usage patterns, and suchlike. We present a formal framework to study the information leakage in shared resource schedulers using the pattern estimation error as a performance metric. The first-come-first-serve (FCFS) scheduling policy and time-division-multiple-access (TDMA) are identified as two extreme policies on the privacy metric, FCFS has the least, and TDMA has the highest. However, on performance based metrics, such as throughput and delay, it is well known that FCFS significantly outperforms TDMA. We then derive two parametrized policies, accumulate and serve, and proportional TDMA, which take two different approaches to offer a tunable trade-off between privacy and performance.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube