The splitting theorem in non-smooth context (1302.5555v1)
Abstract: We prove that an infinitesimally Hilbertian CD(0,N) space containing a line splits as the product of $R$ and an infinitesimally Hilbertian CD(0,N-1) space. By `infinitesimally Hilbertian' we mean that the Sobolev space $W{1,2}(X,d,m)$, which in general is a Banach space, is an Hilbert space. When coupled with a curvature-dimension bound, this condition is known to be stable with respect to measured Gromov-Hausdorff convergence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.