Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Series Expansion Approximations of Brownian Motion for Non-Linear Kalman Filtering of Diffusion Processes (1302.5324v3)

Published 21 Feb 2013 in stat.CO

Abstract: In this paper, we describe a novel application of sigma-point methods to continuous-discrete filtering. In principle, the nonlinear continuous- discrete filtering problem can be solved exactly. In practice, the solution contains terms that are computationally intractible. Assumed density filtering methods attempt to match statistics of the filtering distribution to some set of more tractible probability distributions. We describe a novel method that decomposes the Brownian motion driving the signal in a generalised Fourier series, which is truncated after a number of terms. This approximation to Brownian can be described using a relatively small number of Fourier coefficients, and allows us to compute statistics of the filtering distribution with a single application of a sigma-point method. Assumed density filters that exist in the literature usually rely on discretisation of the signal dynamics followed by iterated application of a sigma point transform (or a limiting case thereof). Iterating the transform in this manner can lead to loss of information about the filtering distri- bution in highly nonlinear settings. We demonstrate that our method is better equipped to cope with such problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.