Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decision-Theoretic Troubleshooting: A Framework for Repair and Experiment

Published 13 Feb 2013 in cs.AI | (1302.3563v2)

Abstract: We develop and extend existing decision-theoretic methods for troubleshooting a nonfunctioning device. Traditionally, diagnosis with Bayesian networks has focused on belief updating---determining the probabilities of various faults given current observations. In this paper, we extend this paradigm to include taking actions. In particular, we consider three classes of actions: (1) we can make observations regarding the behavior of a device and infer likely faults as in traditional diagnosis, (2) we can repair a component and then observe the behavior of the device to infer likely faults, and (3) we can change the configuration of the device, observe its new behavior, and infer the likelihood of faults. Analysis of latter two classes of troubleshooting actions requires incorporating notions of persistence into the belief-network formalism used for probabilistic inference.

Citations (73)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.