Partial mixing of semi-random transposition shuffles
Abstract: We show that for any semi-random transposition shuffle on $n$ cards, the mixing time of any given $k$ cards is at most $n\log k$, provided $k=o((n/\log n){1/2})$. In the case of the top-to-random transposition shuffle we show that there is cutoff at this time with a window of size O(n), provided further that $k\to\infty$ as $n\to\infty$ (and no cutoff otherwise). For the random-to-random transposition shuffle we show cutoff at time $(1/2)n\log k$ for the same conditions on $k$. Finally, we analyse the cyclic-to-random transposition shuffle and show partial mixing occurs at time $\le\alpha n\log k$ for some $\alpha$ just larger than 1/2. We prove these results by relating the mixing time of $k$ cards to the mixing of one card. Our results rely heavily on coupling arguments to bound the total variation distance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.