Compressed Sensing with Incremental Sparse Measurements (1302.2420v1)
Abstract: This paper proposes a verification-based decoding approach for reconstruction of a sparse signal with incremental sparse measurements. In its first step, the verification-based decoding algorithm is employed to reconstruct the signal with a fixed number of sparse measurements. Often, it may fail as the number of sparse measurements may be not enough, possibly due to an underestimate of the signal sparsity. However, we observe that even if this first recovery fails, many component samples of the sparse signal have been identified. Hence, it is natural to further employ incremental measurements tuned to the unidentified samples with known locations. This approach has been proven very efficiently by extensive simulations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.