Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exchangeable random measures (1302.2116v7)

Published 8 Feb 2013 in math.PR

Abstract: Let A be a standard Borel space, and consider the space A{\bbN{(k)}} of A-valued arrays indexed by all size-k subsets of \bbN. This paper concerns random measures on such a space whose laws are invariant under the natural action of permutations of \bbN. The main result is a representation theorem for such `exchangeable' random measures, obtained using the classical representation theorems for exchangeable arrays due to de Finetti, Hoover, Aldous and Kallenberg. After proving this representation, two applications of exchangeable random measures are given. The first is a short new proof of the Dovbysh-Sudakov Representation Theorem for exchangeable PSD matrices. The second is in the formulation of a natural class of limit objects for dilute mean-field spin glass models, retaining more information than just the limiting Gram-de Finetti matrix used in the study of the Sherrington-Kirkpatrick model.

Summary

We haven't generated a summary for this paper yet.