Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exchangeable Laws in Borel Data Structures (2208.10667v1)

Published 23 Aug 2022 in math.PR, math.ST, and stat.TH

Abstract: Motivated by statistical practice, category theory terminology is used to introduce Borel data structures and study exchangeability in an abstract framework. A generalization of de Finetti's theorem is shown and natural transformations are used to present functional representation theorems (FRTs). Proofs of the latter are based on a classical result by D.N.Hoover providing a functional representation for exchangeable arrays indexed by finite tuples of integers, together with an universality result for Borel data structures. A special class of Borel data structures are array-type data structures, which are introduced using the novel concept of an indexing system. Studying natural transformations mapping into arrays gives explicit versions of FRTs, which in examples coincide with well-known Aldous-Hoover-Kallenberg-type FRTs for (jointly) exchangeable arrays. The abstract "index arithmetic" presented unifies and generalizes technical arguments commonly encountered in the literature on exchangeability theory. Finally, the category theory approach is used to outline how an abstract notion of seperate exchangeability can be derived, again motivated from statistical practice.

Summary

We haven't generated a summary for this paper yet.