Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing the de Finetti--Hewitt--Savage theorem (2008.08754v4)

Published 20 Aug 2020 in math.PR, math.LO, math.ST, and stat.TH

Abstract: A sequence of random variables is called exchangeable if its joint distribution is invariant under permutations. The original formulation of de Finetti's theorem says that any exchangeable sequence of ${0,1}$-valued random variables can be thought of as a mixture of independent and identically distributed sequences in a certain precise mathematical sense. Interpreting this statement from a convex analytic perspective, Hewitt and Savage obtained the same conclusion for more general state spaces under some topological conditions. The main contribution of this paper is in providing a new framework that explains the theorem purely as a consequence of the underlying distribution of the random variables, with no topological conditions (beyond Hausdorffness) on the state space being necessary if the distribution is Radon. We also show that it is consistent with the axioms of ZFC that de Finetti's theorem holds for all sequences of exchangeable random variables taking values in any complete metric space. The framework we use is based on nonstandard analysis. We have provided a self-contained introduction to nonstandard analysis as an appendix, thus rendering measure theoretic probability and point-set topology as the only prerequisites for this paper. Our introduction aims to develop some new ideologies that might be of interest to mathematicians, philosophers, and mathematics educators alike. Our technical tools come from nonstandard topological measure theory, in which a highlight is a new generalization of Prokhorov's theorem. Modulo such technical tools, our proof relies on properties of the empirical measures induced by hyperfinitely many identically distributed random variables -- a feature that allows us to establish de Finetti's theorem in the generality that we seek while still retaining the combinatorial intuition of proofs of simpler versions of de Finetti's theorem.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com