Papers
Topics
Authors
Recent
2000 character limit reached

Feature Selection for Microarray Gene Expression Data using Simulated Annealing guided by the Multivariate Joint Entropy (1302.1733v1)

Published 7 Feb 2013 in q-bio.QM, cs.CE, cs.LG, and stat.ML

Abstract: In this work a new way to calculate the multivariate joint entropy is presented. This measure is the basis for a fast information-theoretic based evaluation of gene relevance in a Microarray Gene Expression data context. Its low complexity is based on the reuse of previous computations to calculate current feature relevance. The mu-TAFS algorithm --named as such to differentiate it from previous TAFS algorithms-- implements a simulated annealing technique specially designed for feature subset selection. The algorithm is applied to the maximization of gene subset relevance in several public-domain microarray data sets. The experimental results show a notoriously high classification performance and low size subsets formed by biologically meaningful genes.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.