Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hypergraph limits: a regularity approach (1302.1634v3)

Published 7 Feb 2013 in math.CO and math.PR

Abstract: A sequence of $k$-uniform hypergraphs $H_1, H_2, \dots$ is convergent if the sequence of homomorphism densities $t(F, H_1), t(F, H_2), \dots$ converges for every $k$-uniform hypergraph $F$. For graphs, Lov\'asz and Szegedy showed that every convergent sequence has a limit in the form of a symmetric measurable function $W \colon [0,1]2 \to [0,1]$. For hypergraphs, analogous limits $W \colon [0,1]{2k-2} \to [0,1]$ were constructed by Elek and Szegedy using ultraproducts. These limits had also been studied earlier by Hoover, Aldous, and Kallenberg in the setting of exchangeable random arrays. In this paper, we give a new proof and construction of hypergraph limits. Our approach is inspired by the original approach of Lov\'asz and Szegedy, with the key ingredient being a weak Frieze-Kannan type regularity lemma.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.