Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A new, globally convergent Riemannian conjugate gradient method (1302.0125v2)

Published 1 Feb 2013 in math.OC

Abstract: This article deals with the conjugate gradient method on a Riemannian manifold with interest in global convergence analysis. The existing conjugate gradient algorithms on a manifold endowed with a vector transport need the assumption that the vector transport does not increase the norm of tangent vectors, in order to confirm that generated sequences have a global convergence property. In this article, the notion of a scaled vector transport is introduced to improve the algorithm so that the generated sequences may have a global convergence property under a relaxed assumption. In the proposed algorithm, the transported vector is rescaled in case its norm has increased during the transport. The global convergence is theoretically proved and numerically observed with examples. In fact, numerical experiments show that there exist minimization problems for which the existing algorithm generates divergent sequences, but the proposed algorithm generates convergent sequences.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.