Papers
Topics
Authors
Recent
Search
2000 character limit reached

The strong Lefschetz property in codimension two

Published 31 Jan 2013 in math.AC | (1301.7614v2)

Abstract: Every artinian quotient of $K[x,y]$ has the strong Lefschetz property if $K$ is a field of characteristic zero or is an infinite field whose characteristic is greater than the regularity of the quotient. We improve this bound in the case of monomial ideals. Using this we classify when both bounds are sharp. Moreover, we prove that the artinian quotient of a monomial ideal in $K[x,y]$ always has the strong Lefschetz property, regardless of the characteristic of the field, exactly when the ideal is lexsegment. As a consequence we describe a family of non-monomial complete intersections that always have the strong Lefschetz property.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.