Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multivariate Discretization Method for Learning Bayesian Networks from Mixed Data (1301.7403v1)

Published 30 Jan 2013 in cs.AI and cs.LG

Abstract: In this paper we address the problem of discretization in the context of learning Bayesian networks (BNs) from data containing both continuous and discrete variables. We describe a new technique for <EM>multivariate</EM> discretization, whereby each continuous variable is discretized while taking into account its interaction with the other variables. The technique is based on the use of a Bayesian scoring metric that scores the discretization policy for a continuous variable given a BN structure and the observed data. Since the metric is relative to the BN structure currently being evaluated, the discretization of a variable needs to be dynamically adjusted as the BN structure changes.

Citations (74)

Summary

We haven't generated a summary for this paper yet.