Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Ising-like transitions in the O($n$) loop model on the square lattice (1301.6828v1)

Published 29 Jan 2013 in cond-mat.stat-mech

Abstract: We explore the phase diagram of the O($n$) loop model on the square lattice in the $(x,n)$ plane, where $x$ is the weight of a lattice edge covered by a loop. These results are based on transfer-matrix calculations and finite-size scaling. We express the correlation length associated with the staggered loop density in the transfer-matrix eigenvalues. The finite-size data for this correlation length, combined with the scaling formula, reveal the location of critical lines in the diagram. For $n>>2$ we find Ising-like phase transitions associated with the onset of a checkerboard-like ordering of the elementary loops, i.e., the smallest possible loops, with the size of an elementary face, which cover precisely one half of the faces of the square lattice at the maximum loop density. In this respect, the ordered state resembles that of the hard-square lattice gas with nearest-neighbor exclusion, and the finiteness of $n$ represents a softening of its particle-particle potentials. We also determine critical points in the range $-2\leq n\leq 2$. It is found that the topology of the phase diagram depends on the set of allowed vertices of the loop model. Depending on the choice of this set, the $n>2$ transition may continue into the dense phase of the $n \leq 2$ loop model, or continue as a line of $n \leq 2$ O($n$) multicritical points.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.