Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Continuous Value Function Approximation for Sequential Bidding Policies (1301.6682v1)

Published 23 Jan 2013 in cs.AI and cs.GT

Abstract: Market-based mechanisms such as auctions are being studied as an appropriate means for resource allocation in distributed and mulitagent decision problems. When agents value resources in combination rather than in isolation, they must often deliberate about appropriate bidding strategies for a sequence of auctions offering resources of interest. We briefly describe a discrete dynamic programming model for constructing appropriate bidding policies for resources exhibiting both complementarities and substitutability. We then introduce a continuous approximation of this model, assuming that money (or the numeraire good) is infinitely divisible. Though this has the potential to reduce the computational cost of computing policies, value functions in the transformed problem do not have a convenient closed form representation. We develop {em grid-based} approximation for such value functions, representing value functions using piecewise linear approximations. We show that these methods can offer significant computational savings with relatively small cost in solution quality.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube