Papers
Topics
Authors
Recent
2000 character limit reached

Shattering Thresholds for Random Systems of Sets, Words, and Permutations (1301.6371v2)

Published 27 Jan 2013 in math.CO and math.PR

Abstract: This paper considers a problem that relates to the theories of covering arrays, permutation patterns, Vapnik-Chervonenkis (VC) classes, and probability thresholds. Specifically, we want to find the number of subsets of [n]:={1,2,....,n} we need to randomly select, in a certain probability space, so as to respectively "shatter" all t-subsets of [n]. Moving from subsets to words, we ask for the number of n-letter words on a q-letter alphabet that are needed to shatter all t-subwords of the qn words of length n. Finally, we explore the number of random permutations of [n] needed to shatter (specializing to t=3), all length 3 permutation patterns in specified positions. We uncover a very sharp zero-one probability threshold for the emergence of such shattering; Talagrand's isoperimetric inequality in product spaces is used as a key tool.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.