Harmonic Vector Fields on Space Forms (1301.6075v1)
Abstract: A vector field s on a Riemannian manifold M is said to be harmonic if there exists a member of a 2-parameter family of generalised Cheeger-Gromoll metrics on TM with respect to which s is a harmonic section. If M is a simply-connected non-flat space form other than the 2-sphere, examples are obtained of conformal vector fields that are harmonic. In particular, the harmonic Killing fields and conformal gradient fields are classified, a loop of non-congruent harmonic conformal fields on the hyperbolic plane constructed, and the 2-dimensional classification achieved for conformal fields. A classification is then given of all harmonic quadratic gradient fields on spheres.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.