Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials (1301.4887v5)
Abstract: For a two-parameter family of lower triangular matrices with entries involving Jacobi polynomials an explicit inverse is given, with entries involving a sum of two Jacobi polynomials. The formula simplifies in the Gegenbauer case and then one choice of the parameter solves an open problem in a paper by Koelink, van Pruijssen & Roman. The two-parameter family is closely related to two two-parameter groups of lower triangular matrices, of which we also give the explicit generators. Another family of pairs of mutually inverse lower triangular matrices with entries involving Jacobi polynomials, unrelated to the family just mentioned, was given by J. Koekoek & R. Koekoek (1999). We show that this last family is a limit case of a pair of connection relations between Askey-Wilson polynomials having one of their four parameter in common.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.