Special functions and spectrum of Jacobi matrices (1301.2125v1)
Abstract: Several examples of Jacobi matrices with an explicitly solvable spectral problem are worked out in detail. In all discussed cases the spectrum is discrete and coincides with the set of zeros of a special function. Moreover, the components of corresponding eigenvectors are expressible in terms of special functions as well. Our approach is based on a recently developed formalism providing us with explicit expressions for the characteristic function and eigenvectors of Jacobi matrices. This is done under an assumption of a simple convergence condition on matrix entries. Among the treated special functions there are regular Coulomb wave functions, confluent hypergeometric functions, q-Bessel functions and q-confluent hypergeometric functions. In addition, in the case of q-Bessel functions, we derive several useful identities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.