Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Diffusion in Separable d-Dimensional Quasiperiodic Tilings (1212.6337v2)

Published 27 Dec 2012 in cond-mat.dis-nn and cond-mat.mes-hall

Abstract: We study the electronic transport in quasiperiodic separable tight-binding models in one, two, and three dimensions. First, we investigate a one-dimensional quasiperiodic chain, in which the atoms are coupled by weak and strong bonds aligned according to the Fibonacci chain. The associated d-dimensional quasiperiodic tilings are constructed from the product of d such chains, which yields either the square/cubic Fibonacci tiling or the labyrinth tiling. We study the scaling behavior of the mean square displacement and the return probability of wave packets with respect to time. We also discuss results of renormalization group approaches and lower bounds for the scaling exponent of the width of the wave packet.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.