Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions (1212.5942v1)

Published 24 Dec 2012 in math.OC

Abstract: We provide two weakly convergent algorithms for finding a zero of the sum of a maximally monotone operator, a cocoercive operator, and the normal cone to a closed vector subspace of a real Hilbert space. The methods exploit the intrinsic structure of the problem by activating explicitly the cocoercive operator in the first step, and taking advantage of a vector space decomposition in the second step. The second step of the first method is a Douglas-Rachford iteration involving the maximally monotone operator and the normal cone. In the second method it is a proximal step involving the partial inverse of the maximally monotone operator with respect to the vector subspace. Connections between the proposed methods and other methods in the literature are provided. Applications to monotone inclusions with finitely many maximally monotone operators and optimization problems are examined.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube