Multiscale Adaptive Inference on Conditional Moment Inequalities (1212.5729v3)
Abstract: This paper considers inference for conditional moment inequality models using a multiscale statistic. We derive the asymptotic distribution of this test statistic and use the result to propose feasible critical values that have a simple analytic formula, and to prove the asymptotic validity of a modified bootstrap procedure. The asymptotic distribution is extreme value, and the proof uses new techniques to overcome several technical obstacles. The test detects local alternatives that approach the identified set at the best rate among available tests in a broad class of models, and is adaptive to the smoothness properties of the data generating process. Our results also have implications for the use of moment selection procedures in this setting. We provide a monte carlo study and an empirical illustration to inference in a regression model with endogenously censored and missing data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.