Papers
Topics
Authors
Recent
2000 character limit reached

On Sharp Interface Limits for Diffuse Interface Models for Two-Phase Flows (1212.5582v1)

Published 21 Dec 2012 in math.AP

Abstract: We discuss the sharp interface limit of a diffuse interface model for a two-phase flow of two partly miscible viscous Newtonian fluids of different densities, when a certain parameter \epsilon>0 related to the interface thickness tends to zero. In the case that the mobility stays positive or tends to zero slower than linearly in \epsilon we will prove that weak solutions tend to varifold solutions of a corresponding sharp interface model. But, if the mobility tends to zero faster than \epsilon3 we will show that certain radially symmetric solutions tend to functions, which will not satisfy the Young-Laplace law at the interface in the limit.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.