Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lie geometry of 2x2 Markov matrices (1212.5311v1)

Published 21 Dec 2012 in math.ST, q-bio.PE, and stat.TH

Abstract: In recent work discussing model choice for continuous-time Markov chains, we have argued that it is important that the Markov matrices that define the model are closed under matrix multiplication (Sumner 2012a, 2012b). The primary requirement is then that the associated set of rate matrices form a Lie algebra. For the generic case, this connection to Lie theory seems to have first been made by Johnson (1985), with applications for specific models given in Bashford (2004) and House (2012). Here we take a different perspective: given a model that forms a Lie algebra, we apply existing Lie theory to gain additional insight into the geometry of the associated Markov matrices. In this short note, we present the simplest case possible of 2x2 Markov matrices. The main result is a novel decomposition of 2x2 Markov matrices that parameterises the general Markov model as a perturbation away from the binary-symmetric model. This alternative parameterisation provides a useful tool for visualising the binary-symmetric model as a submodel of the general Markov model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.