Products of random matrices and queueing system performance evaluation
Abstract: We consider (max,+)-algebra products of random matrices, which arise from performance evaluation of acyclic fork-join queueing networks. A new algebraic technique to examine properties of the product and investigate its limiting behaviour is proposed based on an extension of the standard matrix (max,+)-algebra by endowing it with the ordinary matrix addition as an external operation. As an application, we derive bounds on the (max,+)-algebra maximal Lyapunov exponent which can be considered as the cycle time of the networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.