Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Analysis of Contact Cauchy-Riemann maps I: a priori $C^k$ estimates and asymptotic convergence (1212.5186v4)

Published 20 Dec 2012 in math.SG

Abstract: In the present article, we develop the analysis of the following nonlinear elliptic system of equations $$ \bar\partial\pi w = 0, \, d(w*\lambda \circ j) = 0 $$ first introduced by Hofer, associated to each given contact triad $(M,\lambda,J)$ on a contact manifold $(M,\xi)$. We directly work with this elliptic system on the contact manifold without involving the symplectization process. We establish the local a priori $Ck$ coercive pointwise estimates for all $k \geq 2$ in terms of $|dw|{C0}$ by doing tensorial calculations on contact manifold itself using the contact triad connection introduced by present the authors. Equipping the punctured Riemann surface $(\dot \Sigma,j)$ with a cylindrical K\"ahler metric and isothermal coordinates near every puncture, we prove the asymptotic (subsequence) convergence to the spiraling' instantons along therotating' Reeb orbit for any solution $w$, not necessarily for $w*\lambda \circ j$ being exact (i.e., allowing non-zero `charge' $Q \neq 0$), with bounded gradient $|d w|{C0} < C$ and finite $\pi$-harmonic energy. For nondegenerate contact forms, we employ the `three-interval method' to prove the exponential convergence to a closed Reeb orbit when $Q = 0$. (The Morse-Bott case using this method is treated in a sequel (arXiv:1311.6196).)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.