Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra (1212.4740v2)
Abstract: We give a natural and complete description of Ecalle's mould-comould formalism within a Hopf-algebraic framework. The arborification transform thus appears as a factorization of characters, involving the shuffle or quasishuffle Hopf algebras, thanks to a universal property satisfied by Connes-Kreimer Hopf algebra. We give a straightforward characterization of the fundamental process of homogeneous coarborification, using the explicit duality between decorated Connes-Kreimer and Grossman-Larson algebras. Finally, we introduce a new Hopf algebra that systematically underlies the calculations for the normalization of local dynamical systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.