Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Feature vector regularization in machine learning (1212.4569v2)

Published 19 Dec 2012 in stat.ML

Abstract: Problems in ML can involve noisy input data, and ML classification methods have reached limiting accuracies when based on standard ML data sets consisting of feature vectors and their classes. Greater accuracy will require incorporation of prior structural information on data into learning. We study methods to regularize feature vectors (unsupervised regularization methods), analogous to supervised regularization for estimating functions in ML. We study regularization (denoising) of ML feature vectors using Tikhonov and other regularization methods for functions on ${\bf R}n$. A feature vector ${\bf x}=(x_1,\ldots,x_n)={x_q}_{q=1}n$ is viewed as a function of its index $q$, and smoothed using prior information on its structure. This can involve a penalty functional on feature vectors analogous to those in statistical learning, or use of proximity (e.g. graph) structure on the set of indices. Such feature vector regularization inherits a property from function denoising on ${\bf R}n$, in that accuracy is non-monotonic in the denoising (regularization) parameter $\alpha$. Under some assumptions about the noise level and the data structure, we show that the best reconstruction accuracy also occurs at a finite positive $\alpha$ in index spaces with graph structures. We adapt two standard function denoising methods used on ${\bf R}n$, local averaging and kernel regression. In general the index space can be any discrete set with a notion of proximity, e.g. a metric space, a subset of ${\bf R}n$, or a graph/network, with feature vectors as functions with some notion of continuity. We show this improves feature vector recovery, and thus the subsequent classification or regression done on them. We give an example in gene expression analysis for cancer classification with the genome as an index space and network structure based protein-protein interactions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.