Papers
Topics
Authors
Recent
2000 character limit reached

The wave front set of the Fourier transform of algebraic measures (1212.3630v2)

Published 14 Dec 2012 in math.AG and math.FA

Abstract: We study the Fourier transform of the absolute value of a polynomial on a finite-dimensional vector space over a local field of characteristic 0. We prove that this transform is smooth on an open dense set. We prove this result for the Archimedean and the non-Archimedean case in a uniform way. The Archimedean case was proved in [Ber]. The non-Archimedean case was proved in [HK] and [CL]. Our method is different from those described in [Ber,HK,CL]. It is based on Hironaka's desingularization theorem, unlike [Ber] which is based on the theory of D-modules and [HK,CL] which is based on model theory. Our method also gives bounds on the open dense set where the Fourier transform is smooth. These bounds are explicit in terms of resolution of singularities. We also prove the same result on the Fourier transform of other measures of algebraic origins.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.