Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Parametrix Construction for the Laplacian on Q-rank 1 Locally Symmetric Space (1212.3459v2)

Published 14 Dec 2012 in math.AP and math.DG

Abstract: This paper presents the construction of parametrices for the Gauss-Bonnet and Hodge Laplace operators on noncompact manifolds modelled on Q-rank 1 locally symmetric spaces. These operators are, up to a scalar factor, $\phi$-differential operators, that is, they live in the generalised $\phi$-calculus studied by the authors in a previous paper, which extends work of Melrose and Mazzeo. However, because they are not totally elliptic elements in this calculus, it is not possible to construct parametrices for these operators within the $\phi$-calculus. We construct parametrices for them in this paper using a combination of the $b$-pseudodifferential operator calculus of R. Melrose and the $\phi$-pseudodifferential operator calculus. The construction simplifies and generalizes the construction done by Vaillant in his thesis for the Dirac operator. In addition, we study the mapping properties of these operators and determine the appropriate Hlibert spaces between which the Gauss-Bonnet and Hodge Laplace operators are Fredholm. Finally, we establish regularity results for elements of the kernels of these operators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.