Papers
Topics
Authors
Recent
2000 character limit reached

Keplerian Dynamics on the Heisenberg Group and Elsewhere (1212.2713v1)

Published 12 Dec 2012 in math.DS, math-ph, math.DG, and math.MP

Abstract: Posing Kepler's problem of motion around a fixed "sun" requires the geometric mechanician to choose a metric and a Laplacian. The metric provides the kinetic energy. The fundamental solution to the Laplacian (with delta source at the "sun") provides the potential energy. Posing Kepler's three laws (with input from Galileo) requires symmetry conditions. The metric space must be homogeneous, isotropic, and admit dilations. Any Riemannian manifold enjoying these three symmetry properties is Euclidean. So if we want a semblance of Kepler's three laws to hold but also want to leave the Euclidean realm, we are forced out of the realm of Riemannian geometries. The Heisenberg group (a subRiemannian geometry) and lattices provide the simplest examples of metric spaces enjoying a semblance of all three of the Keplerian symmetries. We report success in posing, and solving, the Kepler problem on the Heisenberg group. We report failures in posing the Kepler problem on the rank two lattice and partial success in solving the problem on the integers. We pose a number of questions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.