Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Value Elimination: Bayesian Inference via Backtracking Search (1212.2452v1)

Published 19 Oct 2012 in cs.AI

Abstract: Backtracking search is a powerful algorithmic paradigm that can be used to solve many problems. It is in a certain sense the dual of variable elimination; but on many problems, e.g., SAT, it is vastly superior to variable elimination in practice. Motivated by this we investigate the application of backtracking search to the problem of Bayesian inference (Bayes). We show that natural generalizations of known techniques allow backtracking search to achieve performance guarantees similar to standard algorithms for Bayes, and that there exist problems on which backtracking can in fact do much better. We also demonstrate that these ideas can be applied to implement a Bayesian inference engine whose performance is competitive with standard algorithms. Since backtracking search can very naturally take advantage of context specific structure, the potential exists for performance superior to standard algorithms on many problems.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.