Papers
Topics
Authors
Recent
2000 character limit reached

Renormalization-group flow and asymptotic behaviors at the Berezinskii-Kosterlitz-Thouless transitions

Published 11 Dec 2012 in cond-mat.stat-mech and cond-mat.quant-gas | (1212.2322v2)

Abstract: We investigate the general features of the renormalization-group flow at the Berezinskii-Kosterlitz-Thouless (BKT) transition, providing a thorough quantitative description of the asymptotc critical behavior, including the multiplicative and subleading logarithmic corrections. For this purpose, we consider the RG flow of the sine-Gordon model around the renormalizable point which describes the BKT transition. We reduce the corresponding beta-functions to a universal canonical form, valid to all perturbative orders. Then, we determine the asymptotic solutions of the RG equations in various critical regimes: the infinite-volume critical behavior in the disordered phase, the finite-size scaling limit for homogeneous systems of finite size, and the trap-size scaling limit occurring in 2D bosonic particle systems trapped by an external space-dependent potential.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.