2000 character limit reached
Fully Adaptive Gaussian Mixture Metropolis-Hastings Algorithm (1212.0122v3)
Published 1 Dec 2012 in stat.CO and stat.ME
Abstract: Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multi-modal and multi-dimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.