Prescribing the behavior of Weil-Petersson geodesics in the moduli space of Riemann surfaces
Abstract: We study Weil-Petersson (WP) geodesics with narrow end invariant and develop techniques to control length-functions and twist parameters along them and prescribe their itinerary in the moduli space of Riemann surfaces. This class of geodesics is rich enough to provide for examples of closed WP geodesics in the thin part of the moduli space, as well as divergent WP geodesic rays with minimal filling ending lamination. Some ingredients of independent interest are the following: A strength version of Wolpert's Geodesic Limit Theorem proved in Sec.4. The stability of hierarchy resolution paths between narrow pairs of partial markings or laminations in the pants graph proved in Sec.5. A kind of symbolic coding for laminations in terms of subsurface coefficients presented in Sec.7.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.