Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Persistence and periodicity in a dynamic proximity network (1211.7343v1)

Published 30 Nov 2012 in physics.data-an, cs.SI, and physics.soc-ph

Abstract: The topology of social networks can be understood as being inherently dynamic, with edges having a distinct position in time. Most characterizations of dynamic networks discretize time by converting temporal information into a sequence of network "snapshots" for further analysis. Here we study a highly resolved data set of a dynamic proximity network of 66 individuals. We show that the topology of this network evolves over a very broad distribution of time scales, that its behavior is characterized by strong periodicities driven by external calendar cycles, and that the conversion of inherently continuous-time data into a sequence of snapshots can produce highly biased estimates of network structure. We suggest that dynamic social networks exhibit a natural time scale \Delta_{nat}, and that the best conversion of such dynamic data to a discrete sequence of networks is done at this natural rate.

Citations (157)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.