Papers
Topics
Authors
Recent
Search
2000 character limit reached

The monotonicity of f-vectors of random polytopes

Published 29 Nov 2012 in cs.CG and math.MG | (1211.7020v1)

Abstract: Let K be a compact convex body in Rd, let Kn be the convex hull of n points chosen uniformly and independently in K, and let fi(Kn) denote the number of i-dimensional faces of Kn. We show that for planar convex sets, E(f0(Kn)) is increasing in n. In dimension d>=3 we prove that if lim(E((fd -1)/(Anc)->1 when n->infinity for some constants A and c > 0 then the function E(fd-1) is increasing for n large enough. In particular, the number of facets of the convex hull of n random points distributed uniformly and independently in a smooth compact convex body is asymptotically increasing. Our proof relies on a random sampling argument.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.